Generalized Jacobi weights, Christoffel functions, and zeros of orthogonal polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Zeros of Orthogonal Polynomials for Jacobi-Exponential Weights

and Applied Analysis 3 d The function T t : tQ′ t Q t , t / 0, 1.9 is quasi-decreasing in a, 0 and quasi-increasing in 0, b , respectively. Moreover T t ≥ Λ > 1, t ∈ I \ {0}. 1.10 e There exists 0 ∈ 0, 1 such that, for y ∈ I \ {0}, T ( y ) ∼ T ( y [ 1 − 0 T ( y ) ]) . 1.11 Then we write W ∈ F. f In addition, assume that there exist C, 1 > 0 such that, for all x ∈ I \ {0}, ∫x x− 1|x|/T x |Q′ t −...

متن کامل

Zeros of Quasi-Orthogonal Jacobi Polynomials

We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α > −1, −2 < β < −1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P (α,β) n and P (α,β+2) n are interlacing, holds when the parameters α and β are in the range α > −1 and −2 < β < −1. We prove that t...

متن کامل

Block Jacobi Matrices and Zeros of Multivariate Orthogonal Polynomials

A commuting family of symmetric matrices are called the block Jacobi matrices, if they are block tridiagonal. They are related to multivariate orthogonal polynomials. We study their eigenvalues and joint eigenvectors. The joint eigenvalues of the truncated block Jacobi matrices correspond to the common zeros of the multivariate orthogonal polynomials.

متن کامل

On the Christoffel–darboux Formula for Generalized Matrix Orthogonal Polynomials

We obtain an extension of the Christoffel–Darboux formula for matrix orthogonal polynomials with a generalized Hankel symmetry, including the Adler-van Moerbeke generalized orthogonal polynomials.

متن کامل

Generalized Jacobi polynomials/functions and their applications

We introduce a family of generalized Jacobi polynomials/functions with indexes α,β ∈ R which are mutually orthogonal with respect to the corresponding Jacobi weights and which inherit selected important properties of the classical Jacobi polynomials. We establish their basic approximation properties in suitably weighted Sobolev spaces. As an example of their applications, we show that the gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1992

ISSN: 0021-9045

DOI: 10.1016/0021-9045(92)90136-c